登录

第二册不等式证明

目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。

过程:

一、复习:

1.不等式的一个等价命题

2.比较法之一(作差法)步骤:作差——变形——判断——结论

二、作差法:(P1314

1. 求证:x2 + 3 > 3x

    证:∵(x2 + 3) - 3x =

        x2 + 3 > 3x

2. 已知a, b, m都是正数,并且a < b,求证:

   证:

a,b,m都是正数,并且a<b,∴b + m > 0 ,  b - a > 0

    即:

         变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断?

3. 已知a, b都是正数,并且a ¹ b,求证:a5 + b5 > a2b3 + a3b2

   证:(a5 + b5 ) - (a2b3 + a3b2) =( a5 - a3b2) + (b5 - a2b3 )

=a3 (a2 - b2 ) - b3 (a2 - b2) =(a2 - b2 ) (a3 - b3)

=(a + b)(a - b)2(a2 + ab + b2)

a, b都是正数,∴a + b, a2 + ab + b2 > 0

又∵a ¹ b,∴(a - b)2 > 0   (a + b)(a - b)2(a2 + ab + b2) > 0

即:a5 + b5 > a2b3

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和