目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。
过程:
一、复习:
1.不等式的一个等价命题
2.比较法之一(作差法)步骤:作差——变形——判断——结论
二、作差法:(P13—14)
1. 求证:x2 + 3 > 3x
证:∵(x2 + 3) - 3x =
∴x2 + 3 > 3x
2. 已知a, b, m都是正数,并且a < b,求证:
证:
∵a,b,m都是正数,并且a<b,∴b + m > 0 , b - a > 0
∴ 即:
变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断?
3. 已知a, b都是正数,并且a ¹ b,求证:a5 + b5 > a2b3 + a3b2
证:(a5 + b5 ) - (a2b3 + a3b2) =( a5 - a3b2) + (b5 - a2b3 )
=a3 (a2 - b2 ) - b3 (a2 - b2) =(a2 - b2 ) (a3 - b3)
=(a + b)(a - b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a ¹ b,∴(a - b)2 > 0 ∴(a + b)(a - b)2(a2 + ab + b2) > 0
即:a5 + b5 > a2b3
阅读全文